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Abstract
We investigate the influence of the atomic core on the spectral rigidity of the
spectrum of nonhydrogenic atoms in a magnetic field. Quantum calculations for
atoms with varying core properties are undertaken and the rigidity compared
to the hydrogenic one. We find that the presence of a scatterer does not
systematically induce chaos: in certain cases the nonhydrogenic spectrum is
less rigid than the scatterer-free hydrogenic one, whereas a chaotic system is
usually associated with more rigid spectra than regular systems. A semiclassical
theory based on the geometrical theory of diffraction is developed to understand
these findings, and the semiclassical calculations of the diffractive contribution
to the spectral rigidity agree with the quantum results.

PACS numbers: 03.65.Sq, 32.60.+i, 05.45.Mt

(Some figures in this article are in colour only in the electronic version)

It is well known that the level statistics of simple quantum systems are connected to the
dynamical behaviour of their classical counterparts. This connection is rendered manifest
by the use of semiclassical methods, whereby the level spectrum of a quantum system is
obtained in terms of classical periodic orbits by means of trace formulae. Berry [1] showed
how the spectral rigidity �(L), which measures deviations of the spectral staircase from a
straight line, could be obtained in the semiclassical limit in terms of classical quantities:
the mean properties of long orbits give rise to a universal behaviour for generic chaotic or
integrable systems, whereas the shortest orbits imprint a system specific signature. When a
scatterer is added to a system, the trace formula acquires additional terms (diffractive orbits)
produced by the diffraction of the semiclassical waves on the scatterer [2]. Lately interest has
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focused on the influence of a scatterer on the statistics. For example, in chaotic systems a
point-like scatterer does not modify the statistics, due to a cancellation of the universal part
of the spectral form factor which was explained semiclassically in terms of the correlations
between periodic-diffractive and diffractive orbits [3, 4]. On the other hand, perturbations in
integrable or mixed phase space systems affect the statistics. Semiclassical methods allow
us to determine long-range correlations (relative to the mean level spacing) such as the form
factor provided diffraction is appropriately taken into account, as has recently been done for
rectangular billiards [5].

We investigate here nonhydrogenic Rydberg atoms in a static magnetic field. The
hydrogen atom in a magnetic field has been a paradigm of an experimentally accessible
system displaying quantum chaos [6]. Nonhydrogenic Rydberg atoms, in which a scatterer—
the atomic core—characterized by short-range phase shifts known as quantum defects is
added to the hydrogenic problem have also been widely investigated. Much work has focused
on how short-range statistics such as the nearest neighbour spacing (NNS) distributions are
modified as a function of the quantum defect of the scatterer: irrespective of the phase space
properties (near-integrable, mixed or chaotic), level repulsion was seen to increase with the
core-scattering intensity. From these results emerged the idea of ‘core-induced chaos’ [7],
though whether this chaos is of the same nature as generic chaos has been discussed [8]. It is
therefore of interest to investigate long-range statistics, which are the only ones amenable to a
semiclassical treatment and may as such shed new light on the chaotic nature of the diffractive
process.

In the present work, we calculate the spectral rigidity for nonhydrogenic Rydberg atoms
in a magnetic field determined from accurate quantum calculations, and compare it to the
hydrogenic results, in the mixed phase space and near-integrable regimes. A surprising finding
is that contrary to expectations based on ‘core-induced chaos’ arguments and to numerical
results obtained on billiards [9], adding a scatterer does not necessarily yield a spectral signature
characteristic of more chaotic dynamics than in the scatterer-free system. Indeed, we have
observed in some cases less rigid spectra in nonhydrogenic atoms than in the hydrogenic case.
To understand these results, we go beyond previous work [10], which focused on s-wave
scattering in the integrable regime, and account for the difference between nonhydrogenic and
hydrogenic rigidities by means of a semiclassical formalism based on the geometrical theory
of diffraction, which allows us to obtain a trace formula for nonhydrogenic atoms. This trace
formula will then be employed in the semiclassical expression of the spectral rigidity. We
will see that for these systems, with a small but fixed value of h̄, non-universal contributions
to the diffractive spectral rigidity are particularly important. Employing an effective diagonal
approximation to the form factor in the one-scatter approximation, we obtain semiclassical
results in reasonable agreement with the quantum calculations.

As is known, the hydrogen atom in a magnetic field possesses axial symmetry reducing the
semiclassical problem from three to two dimensions. It also has an important scaling property
[6], which allows the calculation of quantum spectra while keeping the classical dynamics
fixed. The classical dynamics of the electron does not depend separately on its energy E and
the magnetic field strength γ but is invariant provided ε = Eγ −2/3 is constant. ε is the scaled
energy and the dynamics goes from the near-integrable to the chaotic regime as ε is varied.
We will use scaled variables throughout: h̄ is replaced by κ−1 ≡ γ 1/3 which plays the role of
an effective Planck constant. For a given value of ε, the fluctuations in the density of states
are given by the trace formula

dG(κ) = 1

2π

∑
p

AG
p exp(iκSp) (1)
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Figure 1. GG is carried by paths connecting r1 directly to r2, whereas GD takes into account
trajectories that hit the scatterer. The white circle around the scatterer is the inner zone, where a
quantum treatment is appropriate.

where the sum runs on the periodic orbits p of the system and the G stands for ‘geometric’
(to distinguish these contributions from the diffractive ones). Complex conjugation will be
implicitly understood. Sp is the action, and the amplitude is

AG
p = Sp exp(−i(αp + βp))π/2

|det(Mp − I )|1/2
(2)

where α is the Maslov index, β is related to the sign of the mixed derivatives of S transverse
to the periodic orbit and M is the 2 × 2 monodromy matrix.

In nonhydrogenic Rydberg atoms, the presence of the core modifies the Green’s function;
in the semiclassical limit, this means that besides the geometrical classical path linking directly
two points r and r′, additional paths that hit the core must be taken into account (see figure 1).
On the other hand, the scattering between the outer electron and the atomic core is intrinsically
a quantum process and must be treated as such. To obtain the diffractive contribution to the
trace formula, we proceed in the following steps that are sketched below; full details will be
given elsewhere [11], in the more general context of multilevel quantum scatterers. Note that
some of the arguments employed below are well known in the context of Closed Orbit theory
which is a semiclassical treatment of photoabsorption for atoms in fields (see [12] and the
references given in [13]).

First, we divide configuration space into two zones: a small inner zone around the core is
divided from the outer zone (figure 1). In the inner zone the magnetic field is negligible and
we have a simple Coulomb problem. Let GG be the scatterer-free Green’s function; the total
Green’s function is obtained by projecting the resolvent equation G = GG + GGT GG, yielding

G(r2, r1) = −16π
∑

m,l�|m|
|m〉g+

l (r2)Ylm(θ2)
∑

m′,l′�|m′|

[
δll′fl′(r1) + Tll′g

+
l′ (r1)

]
Y ∗

l′m′(θ1)〈m′| (3)

where r2 > r1 and Ylm(θi) stands for the spherical harmonic Ylm(θi, 0).fl and gl are standing
Coulomb waves respectively regular and irregular at the origin, and g±

l = (gl ± ifl) are
outgoing and incoming Coulomb waves. The T-matrix elements arise from the short-range
core–electron interaction; we assume, as is often realized in atoms, that the T-matrix is diagonal
and given by Tl = (1−exp(2iπµl))/2i, where µl is the quantum defect for the lth partial wave.
In the outer region, the excited electron is subjected to both the Coulomb and magnetic fields
and a semiclassical approximation to the two-dimensional Green’s function is appropriate. m,
quantized along the magnetic field axis, is conserved, and for a given m the Green’s function
is given by the usual expression

GG
sc(r

′, r) =
∑

p

(h̄
√

2πh̄)−1|Dp|1/2 exp(i(Sp(r′, r) − αpπ/2 − 3π/4)) (4)
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where the sum runs on the classical trajectories connecting r and r′; we will denote by GG
sc(p)

the pth term of this sum. Dp is the standard determinant.
The second step is to connect the inner and the outer zones. To do so we consider ψ(r2),

the wavefunction at r2 produced by a unit source placed at r1 that has scattered on the core,
entering the inner region at rf and leaving it at ri (see figure 1). Then the wave arriving at
rf is simply GG

sc(rf , r1). On the other hand, the most general solution in the inner zone is
obtained from the Lippmann–Schwinger counterpart of equation (3) as∑

l�|m|
clmYlm(θ)

[
fl(r0) − i

2
(exp(2iπµl) − 1)g+

l (r0)
]
. (5)

The coefficients clm are obtained by matching at rf = (r0, θf ) the incoming part of
equation (5) to GG

sc(rf , r1) in the stationary phase approximation (along the angle of stationary
phase θfp for each trajectory p). The scattered outgoing wave in the inner zone is given by
the outgoing part of equation (5), which leaves the inner zone at ri = (r0, θi). From the
knowledge of the wavefunction on r0, we can propagate the wavefunction semiclassically
beyond r0 as prescribed by Maslov [17],

ψ(r) =
∑

q

√
ρq(r) exp(i(Sq − αqπ/2 − 3π/4)) (6)

where ρq(r) is the solution of the transport equation for the density and is proportional to Dq ; q
denotes the classical trajectories having left the boundary circle at riq = (r0, θiq). Employing
the asymptotic expansion for g+

l (r0) we rearrange terms so that the action propagates from and
to the origin r = 0 and finally obtain ψ(r2) or equivalently the Green’s function corresponding
to the diffractive process as

GD(r2, r1) = |m〉〈m|
∑
q,p

GG
sc(q)(r2, 0)Cqp(µ;m)GG

sc(p)(0, r1). (7)

As in other works based on the geometrical theory of diffraction (e.g. [2, 15]), the diffractive
Green’s function is obtained from the free Green’s function linked by a diffraction constant
Cqp which is here given by

Cqp(µ;m) =
∑

l

ih̄2
eff2

3π2r0 sin θiq sin θfpYlm(θiq)Y
∗
lm(θfp)(1 − exp(2iπµl)). (8)

We have emphasized the dependence of C on the properties of the classical trajectories q and
p and on the quantum property of the scatterer. h̄eff is the mean value of κ−1.

The third step consists in taking the trace of GD . This is done by using a stationary phase
integration along the coordinates perpendicular to the orbit as detailed in [15]. The trace is
then obtained as a sum over periodic orbits closed at the origin where for each orbit free
geometric propagation GG

sc(q)(0, 0) is weighted by the diffraction constant Cqq(µ;m). The
diffractive density of states can be put in a form similar to equation (1),

dD(κ) = 1

2π

∑
q

AD
q exp(iκSq) (9)

with the diffractive amplitude

AD
q = −i

∑
l

h̄
1/2
eff Sq exp(−i(αqπ/2 + 3π/4))(exp(2iπµl) − 1)

×Ylm(θiq)Y
∗
lm(θf q)2

3/2π3/2

∣∣∣∣ sin θiq sin θf q

m12(q)

∣∣∣∣
1/2

(10)
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where m12 is the element of M with the initial deviation in the momentum coordinate. Note
that an expression equivalent to equation (10) in the particular case of s-wave scattering was
inferred in [14] from the comparison of Fourier-transformed spectra of hydrogen and lithium
atoms.

The spectral rigidity �(L) is defined as the least squares deviation of the staircase function
N of the unfolded spectrum from a straight line, over a level range L. The semiclassical
approximation to �(L) was derived in [1]; in scaled coordinates this can be put as

�XY (L) = 1

2π2

∫ ∞

0

dν

ν

KXY (ν/πL)

ν/πL
γ (ν) (11)

with ν = LS/2χ , where χ ≡ ∂ 〈N 〉 /∂κ is a constant due to scaling. γ (ν) =
1 − F 2(ν) − 3[F ′(ν)]2 is known as the ‘orbit selection function’, where F(ν) ≡ sin ν/ν.
KXY is the spectral form factor, given by

KXY (σ ) � 1

2πχ

〈∑
p,q

AX
p

[
AY

q

]∗
exp[i(Sp − Sq)κ0] δ

(
S − Sp + Sq

2

)〉
(12)

with σ = ν/πL = S/2πχ . The bracket denotes an average over the starting points κ0. The
indices X and Y are insignificant in the scatterer-free system. But in the nonhydrogenic case,
the total density is given by d = dG + dD and by following Berry’s original derivation it is
easily seen that the spectral rigidity takes the form �(L) = �GG(L) + �GD(L) + �DD(L)

with each term being given by equation (11), and X and Y are obviously seen to refer to G
or D contributions. Since �GG is the rigidity for the scatterer free system, the influence of
diffraction on the spectral rigidity—which is the quantity of interest in the present work—is
given by

�diff(L) = �GD(L) + �DD(L) = �(L) − �GG(L). (13)

To determine �GD and �DD , we use two different approximations for the form factor
which have been discussed in [1]. For very short orbits (σ < σ ∗, with σ ∗ 	 1), the
diagonal approximation involves keeping only the contributions of orbits having the same
action. Discarding accidental orbit degeneracies, we sum on the sole short orbits closed at the
origin, which are both solutions of the geometric and of the diffractive systems (with different
amplitudes however) and obtain

�XY (L) =
∑

q∈{σq<σ ∗}

1

2π2

1

S2
q

AX
q

[
AY

q

]∗
G

(
LSk

2χ

)
. (14)

To take into account longer orbits, up to the Heisenberg ‘time’ σh = 1, it is necessary
to invoke classical sum rules. For the term �DD(L), the relevant sum rule for transient
orbits has been given by Sieber [16]. We use average angles θ̄ = π/4 and write the sum∑

q |m12(q)|−1δ
(
S − S

j

k

) ≈ 2π�(ε)−1 to obtain

KDD(1 > σ > σ ∗) ≈ 1

2πχ
h̄eff2

5π4
∑

l

1

�(ε)
sin2 πµl|Ylm(θ̄)|4S2 (15)

where �(ε) is the volume of the energy surface in the scaled phase space at scaled energy
ε. The term �GD(L) involves cross correlations between diffractive and geometric orbits.
Relevant sum rules have been given in [3, 4]; they rely on expanding Sp − Sq in terms of
|det(M − I )| and |m12|. Integration along the boundary circle (perpendicular to the orbits)
yields

KGD(1 > σ > σ ∗) ≈ −1

2πχ
h̄eff

25/2π3√
2 +

√
2

∑
l

1

�(ε)
(1 − exp(2iπµl))|Ylm(θ̄)|2S2 (16)
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Figure 2. (a) Difference of spectral rigidities �(L; µ)−�(L;µ = 0) between nonhydrogenic and
hydrogen atoms obtained from quantum calculations at ε = −0.3,m = 1. The different curves
correspond from top to bottom to µ = 0.15 (red solid), µ = 0.05 (purple dot-dashed), µ = 0.25
(yellow solid), µ = 0.35 (green dashed), µ = −0.15 (blue dotted), µ = 0.5 (green solid) and
µ = −0.25 (red dotted). (b) Semiclassical results for the diffractive contribution to the spectral
rigidity �diff(L) for nonhydrogenic atoms with varying µ.

where we have again used the approximation θ̄ = π/4. Lastly, orbits beyond σh enter the
form factor through a semiclassical sum rule which ensures that these long orbits generate the
mean level density [1]. But adding a scatterer does not change the mean level density, so these
orbits cannot enter the determination of �diff(L); in other words we assume (without any other
proof than this heuristic argument) that the contributions KDD(σ � 1) and KGD(σ � 1)

cancel each other so that the contributions for σ � 1 on the right-hand side of equation (13)
vanish.

We have thus determined, within the approximations involved and for L � 1, the
influence of diffraction on the rigidity. Equation (14) with AX

q and AY
q replaced by the

relevant expressions (2) or (10) gives non-universal (NU) terms; note that in the one-scatter
approximation, �GD

NU is proportional to h̄
1/2
eff and �DD

nu to h̄eff . On the other hand, the universal
terms obtained by replacing equations (15) and (16) in equation (11) do not depend on h̄eff

(since the integral is seen to be 2πχ
∫ 1
σ ∗ dσγ (πLσ), which scales as h̄−1

eff ). Still, for finite h̄eff

and large L, NU terms can be important, whereas KDD and KGD tend to cancel each other, a
property arising from the unitarity of the T-matrix, Im Tl = −|Tl|2 (the approximations made
here do not allow exact cancellation to occur). Note, however, that in the more general case
of a multilevel scatterer, for which the unitarity equations involve the non-diagonal elements,
NU and universal contributions can both compete [11].

We have calculated quantum mechanically the energy levels for hydrogen and for
nonhydrogenic atoms with a single quantum defect µ in the l = 1 partial wave, for m = 1 at
ε = −0.3 (mixed phase space) in the range κ = 60–120 (encompassing about 3500 levels).
χ was determined by fitting the spectral staircase to a second-order polynomial in κ . The
rigidities for hydrogen �(L;µ = 0) and for a nonhydrogenic atom with a given quantum
defect �(L;µ) were calculated, and the influence of the scatterer in the statistics obtained
from the quantum spectra is put in evidence by the difference �(L;µ) − �(L;µ = 0).
This is precisely the quantity to be compared to the diffractive contribution to the rigidity
obtained semiclassically above, equation (13), for which we calculated the relevant classical
quantities. The quantum results are shown in figure 2(a) for several values of µ. The most
striking feature is that for a certain number of µ values, �diff is positive. This means that the
spectrum of the corresponding nonhydrogenic atom is less rigid than the spectrum of hydrogen,
whereas it could be expected that the increase in correlations induced by the scatterer would
systematically result in more disordered dynamics, associated with a stiffer spectrum.

Figure 2(b) shows our semiclassical results. The main behaviour obtained from the
quantum spectra is well reproduced, in particular the sign of �diff(L) which determines whether
the influence of diffraction yields a rigidity higher or lower than in the scatterer-free case.



Letter to the Editor L231

0 25 50 75 100 125 150

0

− .04

− .08

− .12

L
0 25 50 75 100 125 150

L

(a)

∆ d
iff

(L
)

0

− .04

− .08

− .12

(b)

∆ d
iff

(L
)

Figure 3. Same as figure 2 but for ε = −0.3, m = 0.
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Figure 4. Same as figure 2 but for ε = −0.8,m = 1.

Note that the semiclassical results were multiplied by a global factor ∼1.1; this global
rescaling presents one of the main limitations of the present treatment and is due to the
sensitivity arising from the choice of σ ∗ in equation (14). Generic chaotic systems displaying
exponentially decreasing amplitudes would display little sensitivity to the value of σ ∗, but this
is not true in mixed phase space. For the sake of comparison, we have also plotted the quantum
and semiclassical results for the same system but with m = 0 (figure 3), whereas figure 4
displays similar results in the near-integrable regime (ε = −0.8, κ = 80–150 containing
about 1500 levels).

The present results show that the diffractive contributions to the rigidity are dominated
by the shortest periodic and diffractive orbits. The semiclassical formalism developed above
can further allow us, in simple cases, to pinpoint the cause of the observed rigidity. Indeed,
a single typical orbit (with initial and final angles in the first quadrant) contributes to the sign
of �GD in equation (14) as 1 − cos 2πµ ± sin 2πµ (depending on the additional phase β of
equation (2)), which is negative except in one of the intervals [0,±0.25] where it becomes
slightly positive. When many orbits with similar amplitudes are included, we may expect on
average �GD to be proportional to cos 2πµ − 1 < 0. However, the situation in which a few
orbits have large geometric and diffractive amplitudes interfering in a constructive way cannot
be discarded. This is precisely the situation portrayed in figure 2: the second and the fourth
return of the orbit perpendicular to the field, which is stable, have very large amplitudes, due
to a near-rational winding number arising from a bifurcation at a slightly lower scaled energy.
Jumps in �NU are indeed observed when these orbits are included in the sum (14). Note that
when m = 0 perpendicular orbits do not contribute to �diff , as AD given by equation (10)
vanishes when l = 1. The diffractive rigidity has then indeed a very different behaviour, as is
seen in figure 3.

Deviations from universality in the rigidity of non-diffractive systems were observed
before [18], and generally attributed to peculiar families of orbits. In the case of diffractive
systems the general trend, as observed, for example, in integrable billiards [9], is that the
spectrum becomes less rigid as the intensity of the added scatterer is increased. However, we
have seen here that the rigidity has no simple dependence on the intensity of the scatterer,
|µ|, as the complex value of the T-matrix is important. In fact, the diffractive contribution
depends in a crucial way on the classical properties of the shortest orbits that hit the scatterer.



L232 Letter to the Editor

Some of these orbits may therefore affect the rigidity in a particular way, yielding long-range
statistics that would incorrectly appear to reflect a scatterer-perturbed system displaying more
ordered dynamics than the scatterer-free system. In contrast, we have determined the NNS
distributions of the spectra calculated above and in all cases, level repulsion was seen to
depend on |µ|, level repulsion increasing with |µ|. Similar results were recently observed
in circular billiards [19], where for intense perturbations the NNS moved from a Poisson to
a semi-Poisson distribution, though the form factor did not correspond to the semi-Poisson
result. All these findings purport the view that generic and scatter-induced chaos do not follow
the same pattern.
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[8] Jonckheere T, Grémaud B and Delande D 1998 Phys. Rev. Lett. 81 2442

Held H and Schweizer W 2000 Phys. Rev. Lett. 84 1160
[9] Cheon T and Shigehara T 1996 Phys. Rev. E 54 3300

Shigehara T, Mizoguchi H, Mishima T and Cheon T 2001 Nonlinear Anal. 47 3555
[10] Walker P N and Monteiro T S 2000 Phys. Rev. E 61 6444
[11] Matzkin A and Monteiro T S in prepraration
[12] Du M L and Delos J B 1988 Phys. Rev. A 38 1913
[13] Matzkin A, Dando P A and Monteiro T S 2002 Phys. Rev. A 66 013410
[14] Dando P A, Monteiro T S and Owen S M 1998 Phys. Rev. Lett. 80 2797
[15] Bruus H and Whelan N D 1996 Nonlinearity 9 1023
[16] Sieber M 1999 J. Phys. A: Math. Gen. 32 7679
[17] Maslov V P and Fedoriuk M V 1981 Semi-Classical Approximation in Quantum Mechanics (Dordrecht: Reidel)
[18] Hönig A and Wintgen D 1989 Phys. Rev. A 39 5642

Sieber M, Smilansky U, Creagh S C and Littlejohn R G 1993 J. Phys. A: Math. Gen. 26 6217
[19] Rahav S, Richman O and Fishman S 2003 J. Phys. A: Math. Gen. 36 L529


